Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 307(Pt 3): 135920, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35948103

RESUMO

Short-chain fatty acids (SCFAs) generation through anaerobic fermentation has been regarded as a promising pathway to achieve carbon recovery and economic benefits in waste activated sludge management. Despite the cation exchange resin (CER) assistant anaerobic fermentation strategy has been previously reported for enhancing anaerobic fermentation, the overlarge CER usage and serious CER pollution have limited its engineering application. This study provided a reconsideration for the operation pattern modification. Through 4-day anaerobic fermentation with CER residence period shrinking to 1 day, 40.9% sludge VSS solubilization and reduction were achieved, triggering a considerable sludge hydrolysis rate of 28.4%. Thereby, SCFAs production was improved to 264.8 mg COD/g VSS. Such performances were approximately 80.2-87.8% of those with conventional CER residence period (8 days). The organic composition distribution and parallel factor analysis demonstrated that similar biodegradability and utilizability of fermentative liquid were achievable with various operation patterns. Compared with the conventional operation pattern, the modified operation pattern with shortened CER residence period (1 day) also displayed satisfying anaerobic fermentation efficiency and numerous engineering bene fits, e.g. decreased CER usage, reduced engineering footprint, relieved CER fouling, and increased operation convenience. The findings might provide sustainable development for CER assistant anaerobic fermentation strategy and enlighten the direction of anaerobic fermentation process.


Assuntos
Incrustação Biológica , Esgotos , Anaerobiose , Incrustação Biológica/prevenção & controle , Carbono , Resinas de Troca de Cátion , Cátions , Ácidos Graxos Voláteis , Fermentação , Concentração de Íons de Hidrogênio
2.
ACS Omega ; 7(32): 28118-28128, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35990477

RESUMO

Cyclohexene is an important intermediate during the oxidation of cycloalkanes, which comprise a significant portion of real fuels. Thus, experimental data sets and kinetic models of cyclohexene play an important role in the understanding of the combustion of cycloalkanes and real fuels. In this work, an experimental and kinetic modeling study of the high-temperature ignition of cyclohexene is performed. Ignition delay time (IDT) measurements are carried out in a high-pressure shock tube (HPST). The studied pressures are 5, 10, and 20 bar; the equivalence ratios are 0.5, 1.0, and 2.0; and the temperatures range from 980 to 1400 K for IDT in HPST. It is shown that the IDTs of cyclohexene exhibit Arrhenius behaviors as a function of temperature, and the IDTs decrease as the equivalence ratio and pressure increase. The experimental results are simulated using three previous detailed kinetic mechanisms and an updated detailed mechanism in this work. The updated detailed kinetic mechanism exhibits good agreement with experimental results. Reaction path analysis and sensitivity analysis are performed to provide insights into the chemical kinetics controlling the ignition of cyclohexene. The results demonstrate that different detailed kinetic mechanisms are significantly different, and there are still no unified conclusions about the major reaction path for cyclohexene oxidation. However, it is worth noting that the abstraction reaction by oxygen at the allylic site and the submechanism of cyclopentene are of significant importance for the accurate prediction of IDTs of cyclohexene. The present experimental data set and kinetic model should be valuable to improve our understanding of the combustion chemistry of cycloalkanes.

3.
ACS Omega ; 7(10): 8675-8685, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35309437

RESUMO

The hydrogen atom abstraction by the methyl peroxy radical (CH3O2) is an important reaction class in detailed chemical kinetic modeling of the autoignition properties of hydrocarbon fuels. Systematic theoretical studies are performed on this reaction class for H2/C1-C4 fuels, which is critical in the development of a base model for large fuels. The molecules include hydrogen, alkanes, alkenes, and alkynes with a carbon number from 1 to 4. The B2PLYP-D3/cc-pVTZ level of theory is employed to optimize the geometries of all of the reactants, transition states, and products and also the treatments of hindered rotation for lower frequency modes. Accurate benchmark calculations for abstraction reactions of hydrogen, methane, and ethylene with CH3O2 are performed by using the coupled cluster method with explicit inclusion of single and double electron excitations and perturbative inclusion of triple electron excitations (CCSD(T)), the domain-based local pair-natural orbital coupled cluster method (DLPNO-CCSD(T)), and the explicitly correlated CCSD(T)-F12 method with large basis sets. Reaction rate constants are computed via conventional transition state theory with quantum tunneling corrections. The computed rate constants are compared with literature values and those employed in detailed chemical kinetic mechanisms. The calculated rate constants are implemented into the recently developed NUIGMECH1.1 base model for kinetic modeling of ignition properties.

4.
ACS Omega ; 6(28): 18442-18450, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34308075

RESUMO

A basic understanding of the high-temperature pyrolysis process of jet fuels is not only valuable for the development of combustion kinetic models but also critical to the design of advanced aeroengines. The development and utilization of alternative jet fuels are of crucial importance in both military and civil aviation. A direct coal liquefaction (DCL) derived liquid fuel is an important alternative jet fuel, yet fundamental pyrolysis studies on this category of jet fuels are lacking. In the present work, high-temperature pyrolysis studies on a DCL-derived jet fuel and its blend with the traditional RP-3 jet fuel are carried out by using a single-pulse shock tube (SPST) facility. The SPST experiments are performed at averaged pressures of 5.0 and 10.0 bar in the temperature range around 900-1800 K for 0.05% fuel diluted by argon. Major intermediates are obtained and quantified using gas chromatography analysis. A flame-ionization detector and a thermal conductivity detector are used for species identification and quantification. Ethylene is the most abundant product for the two fuels in the pyrolysis process. Other important intermediates such as methane, ethane, propyne, acetylene, and 1,3-butadiene are also identified and quantified. The pyrolysis product distributions of the pure RP-3 jet fuel are also performed. Kinetic modeling is performed by using a modern detailed mechanism for the DCL-derived jet fuel and its blends with the RP-3 jet fuel. Rate-of-production analysis and sensitivity analysis are conducted to compare the differences of the chemical kinetics of the pyrolysis process of the two jet fuels. The present work is not only valuable for the validation and development of detailed combustion mechanisms for alternative jet fuels but also improves our understanding of the pyrolysis characteristics of alternative jet fuels.

5.
ACS Omega ; 6(16): 11039-11047, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-34056257

RESUMO

A single-pulse shock tube study of the pyrolysis of two different concentrations of Chinese RP-3 jet fuel at 5 bar in the temperature range of 900-1800 K has been performed in this work. Major intermediates are obtained and quantified using gas chromatography analysis. A flame-ionization detector and a thermal conductivity detector are used for species identification and quantification. Ethylene is the most abundant product in the pyrolysis process. Other important intermediates such as methane, ethane, propyne, acetylene, butene, and benzene are also identified and quantified. Kinetic modeling is performed using several detailed, semidetailed, and lumped mechanisms. It is found that the predictions for the major species such as ethylene, propene, and methane are acceptable. However, current kinetic mechanisms still need refinement for some important species. Different kinetic mechanisms exhibit very different performance in the prediction of certain species during the pyrolysis process. The rate of production (ROP) is carried out to compare the differences among these mechanisms and to identify major reaction pathways to the formation and consumption of the important species, and the results indicate that further studies on the thermal decomposition of 1,3-butadiene are needed to optimize kinetic models. The experimental data are expected to contribute to a database for the validation of mechanisms under pyrolytic conditions for RP-3 jet fuel and should also be valuable to a better understanding of the combustion behavior of RP-3 jet fuel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...